Сокращение скелетных мышц, произвольное сокращение скелетной мускулатуры происходит влиянием

Содержание
  1. Мышечная система человека
  2. Общий обзор мышечной системы человека
  3. Повышение оригинальности
  4. Результат поиска
  5. Перейти к полному тексту работы
  6. Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru
  7. Смотреть полный текст работы бесплатно
  8. Смотреть похожие работы
  9. Физиологические свойства скелетных мышц. Функциональная характеристика неисчерченных (гладких) мышц. Виды и режимы сокращений скелетных мышц. Одиночное мышечное сокращение, его фазы. Моторная единица
  10. Механизм мышечных сокращений. Функции и свойства скелетных мышц
  11. Мышцы
  12. Физиологические свойства
  13. Виды сокращений
  14. Структура и иннервация скелетных мышц
  15. Иннервация
  16. Структура миофибрилл
  17. Механизм мышечного сокращения волокна
  18. Этапы сокращения
  19. Ионы кальция
  20. 3 процесса с АТФ
  21. Потребление АТФ
  22. Механизм АТФ
  23. Ресинтез АТФ
  24. Физиология процесса

Сокращение скелетных мышц

Основными физиологическими свойствами мышц являются их возбудимость, проводимость и сократимость. Последняя проявляется или в укорочении мышцы, или развитии напряжения.

Для регистрации мышечного сокращения применяется методика миографии, т.е. графической регистрации сокращения с помощью рычажка, присоединенного к одному концу мышцы. Свободный конец рычажка чертит на ленте кимографа кривую сокращения – миограмму. Этот способ регистрации мышечного сокращения прост и не требует сложного оборудования, но имеет тот недостаток, что инерция рычажка и его трении по поверхности ленты кимографа несколько искажают запись. Во избежание этого недостатка теперь применяют специальный датчик, преобразующий механические изменения (линейные перемещения или усилия мышцы) в колебания силы электрического тока. Последние регистрируются с помощью шлейфного или катодного осциллографа.

Точной методикой является также оптическая регистрация, производимая с помощью пучка света, отраженного от зеркальца, наклеенного на брюшко мышцы.

По своим механическим свойствам мышцы относятся к эластомерам — материалам, обладающим эластичностью (растяжимостью и упругостью). Если мышцу подвергнуть действию внешней механической силы, то она растягивается. Величина растяжения мышцы в соответствии с законом Гука будет пропорциональна величине деформирующей силы (в определенных пределах):

где Δl — абсолютное удлинение мышцы; l — начальная длина мышцы; F — деформирующая сила; S — площадь поперечного сечения мышцы; α — коэффициент упругости. Величина отношения F/S называется механическим напряжением, а величина l/α — модулем упругости; он показывает величину напряжения, необходимого для удлинения тела в 2 раза относительно начальной длины.

По своим свойствам мышца приближается к каучуку, модуль упругости для обоих этих материалов равен примерно 10 кгс/см 2 . Мышцы обладают и другими свойствами, присущими каучуку. Как и при растяжении каучука, при сильном растяжении мышцы наблюдается локальная кристаллизация (упорядочение макромолекулярной белковой структуры фибриллярного типа). Это явление было изучено методом рентгеноструктурного анализа. При этом освобождается кристаллизационное тепло, в результате чего температура мышцы при растяжении повышается.

После того как внешнюю силу убирают, мышца восстанавливает свою длину. Однако восстановление не бывает полным. Наличие остаточной деформации характеризует пластичность мышцы — способность сохранять форму после прекращения действия силы. Таким образом, мышца не является абсолютно упругим телом, а обладает вязкоупругими свойствами. При очень сильном растяжении мышца ведет себя как нормальное упругое тело. В этом случае при растяжении температура мышцы понижается.

При сокращении мышцы развивается напряжение и совершается работа. Мышцы обладают сократительными и эластическими элементами. Поэтому возникающее напряжение и совершаемая работа обусловлены не только активным сокращением сократительного комплекса, но и пассивным сокращением, определяемым эластичностью или так называемым последовательным упругим компонентом мышцы. За счет последовательного упругого компонента работа совершается только в том случае, если мышца была предварительно растянута, и величина этой работы пропорциональна величине растяжения мышцы. Этим в большой степени объясняется то, что наиболее мощные движения совершаются при большой амплитуде, обеспечивающей предварительное растяжение мышц.

Мышечные сокращения делятся на изометрические – происходящие при неизменной длине мышцы, и изотонические – происходящие при неизменном напряжении. Чисто изометрические или чисто изотонические сокращения с большим или меньшим приближением можно получить только в лабораторных условиях при работе на изолированных мышцах. В организме сокращения мышц никогда не бывают чисто изометрическими или чисто изотоническими.

Скелетные мышцы с помощью сухожилий прикрепляются к костям, которые образуют систему рычагов. В большинстве случаев мышцы прикрепляются к костям так, что при их сокращении наблюдается выигрыш в амплитуде движений и эквивалентный проигрыш в силе. Плечо рычага мышцы в большинстве случаев бывает меньше плеча рычага соответствующей кости. Согласно Аккерману, механический выигрыш в амплитуде движений большинства конечностей человека имеет величину от 2,5 до 20. Для двуглавой мышцы плеча он равен приблизительно 10. При движении костей соотношение плеч рычагов мышц и костей меняется, что приводит к изменению напряжения мышц. По этой причине изотонических сокращений в естественных условиях не наблюдается. По этой же причине в процессе сокращения меняются вышеприведенные величины механического выигрыша в амплитуде движений.

В зависимости от величины силы, которую преодолевает мышца, скорость сокращения (укорочения) мышцы бывает различной. Хилл на основе опытных данных, полученных при работе на изолированных мышцах, вывел так называемое основное уравнение сокращения мышцы. Согласно Хиллу, скорость сокращения мышцы vнаходится в гиперболической зависимости от величины нагрузки F:

(F + a) (v + b) = const,

где а и b константы, приблизительно равные ¼ Fи соответственно ¼ v.


Нагрузка, кгс

Рис.1. Зависимость скорости сокращения мышцы лягушки от величины нагрузки

Байером были сделаны интересные замечания к уравнению. Уравнение приводится к виду

если принять F’ = F + aи v’ = v + b. Произведение F х v’ представляет собой общую мощность, развиваемую мышцей при сокращении. Так как Fv меньше F’v’, т. е. внешняя мощность меньше общей мощности, то следует предположить, что мышца совершает не только внешнюю работу, но еще и некоторую внутреннюю работу, проявляющуюся в том, что нагрузка как бы увеличивается на величину а, а скорость сокращения на величину b.Эту внутреннюю работу можно интерпретировать как потерю энергии на внутримолекулярное трение в форме теплового рассеивания. Тогда с учетом высказанных замечаний можно отметить, что общая мощность мышцы в физиологических пределах является постоянной величиной, не зависящей от величины нагрузки и скорости сокращения.

С термодинамической точки зрения мышца представляет собой систему, которая преобразует химическую энергию (энергию АТФ) в механическую работу, т. е. мышца является хемомеханической машиной.

Как уже отмечалось, при сокращении мышцы происходит теплообразование. Хиллом с помощью термоэлектрических методов было установлено, что при каждом раздражении вначале выделяется постоянная по величине и не зависящая от нагрузки теплота активации Q, а затем теплота сокращения kΔl,пропорциональная сокращению мышцы Δl и не зависящая от нагрузки (k-коэффициент пропорциональности). Если сокращение изотоническое, то мышца производит работу А, равную произведению нагрузки F на величину сокращения: А = FΔl. Согласно первому закону термодинамики, изменение внутренней энергии ΔU мышцы будет равняться сумме выделенного тепла и совершенной работы:

-ΔU =Q +kΔl +FΔl = Q + Δl (F + k)

Тогда КПД мышечного сокращения будет равен:

Учитывая, что величины Q и k не зависят от F, из последнего уравнения следует, что в определенных пределах КПД мышечного сокращения будет увеличиваться при увеличении нагрузки.

Хилл на основе полученных им в опытах данных определил, что КПД мышечного сокращения примерно равен 40%. Если бы мышца работала как тепловая машина с КПД 40%, то при температуре среды 20°С температура мышцы должна была бы быть равной 215°С. Величина КПД 40% показывает эффективность превращения энергии АТФ в механическую энергию. Если учесть, что КПД окислительного фосфорилирования, в процессе которого синтезируется АТФ, имеет величину около 50%, то полная эффективность превращения энергии питательных веществ в механическую энергию будет равна приблизительно 20%.

Методы раздражения мышц

Для того чтобы вызвать сокращение мышцы, ее подвергают раздражению. Непосредственное раздражение самой мышцы (например, электрическим током) называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы, называется непрямым раздражением. Ввиду того, что возбудимость мышечной ткани меньше, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышцы. Чтобы получить сокращение мышцы под влиянием прямого раздражения, необходимо либо выключить в ней двигательные нервные окончания ядом кураре, либо прикладывать стимул через введенный внутрь мышечного волокна микроэлектрод.

Мышечная система человека

  • Физиология
  • История физиологии

Общий обзор мышечной системы человека

У позвоночных животных и человека различают три разных по строению группы мышц:

  • поперечно-полосатые мышцы скелета;
  • поперечно-полосатая мышца сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Рис. 1. Виды мышц человека

Гладкие мышцы

Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным.

Гладкие мышцы образуют мышечный слой стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых органов. Они состоят из веретенообразных мышечных волокон и не имеют поперечной исчерченности, так как миофибриллы в них расположены менее упорядоченно. В гладких мышцах отдельные клетки соединяются между собой специальными участками наружных мембран — нексусами. За счет этих контактов потенциалы действия распространяются с одного мышечного волокна на другое. Поэтому в реакцию возбуждения быстро вовлекается вся мышца.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Рис. 2. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Гладким мышцам присущи те же основные свойства, что и поперечнополосатым скелетным мышцам, но и некоторые особые свойства:

  • автоматия, т.е. способность сокращаться и расслабляться без внешних раздражений, а за счет возбуждений, возникающих в них самих;
  • высокая чувствительность к химическим раздражителям;
  • выраженная пластичность;
  • сокращение в ответ на быстрое растяжение.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. Скелетные мышцы образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. Сила мышцы пропорциональна количеству волокон, составляющих брюшко мышцы.

Рис. 3. Функции мышечной ткани

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При сокращении концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

У двуосного сустава (эллипсоидный, мышелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемешает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Рис. 4. Мышцы человека

Строение поперечно-полосатых мышц

Скелетные мышцы состоят из большого числа мышечных волокон, которые объединяются в мышечные пучки.

В одном пучке содержится 20-60 волокон. Мышечные волокна представляют собой клетки цилиндрической формы длиной 10-12 см и диаметром 10-100 мкм.

Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме находятся все компоненты животной клетки и вдоль оси мышечного волокна располагаются тонкие нити — миофибриллы, Каждая миофибрилла состоит из протофибрилл, в состав которых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы разделены между собой перегородками, которые называются Z-мембранами, на участки — саркомеры. На обоих концах саркомеров к Z-мембране прикреплены тонкие актиновые нити, а в середине расположены толстые миозиновые нити. Нити актина своими концами частично входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полоски в темном диске. При электронной микроскопии скелетные мышцы выглядят исчерченными (поперечно-полосатыми).

Рис. 5. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка

На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков (рис. 5), которые расположены под углом 120° по отношению к оси миозиновой нити. Актиновые филаменты выглядят в виде двойной нити, закрученной в двойную спираль. В продольных бороздках актиновой спирали находятся нити белка тропомиозина, к которым присоединен белок тропонин. В состоянии покоя молекулы белка тропомиозина расположены таким образом, чтобы предотвращать прикрепление поперечных мостиков миозина к актиновым нитям.

Рис. 6. А — организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Рис. 7. Строение актина и миозина

Во многих местах поверхностная мембрана углубляется в виде микротрубок внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-система). Параллельно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл расположена система продольных трубочек (саркоплазматический ретикулум). Концевые расширения этих трубочек — терминальные цистерны — подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция.

Механизм сокращения скелетной мышцы

Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Рис. 7. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из ЦНС. Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Рефлекторный характер деятельности мышц и координация мышечных сокращений

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл.

Мышечные волокна обладают тремя основными свойствами:

  • возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия;
  • проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения;
  • сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается.

Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофибриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ре- синтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp» , которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


контрольная работа Роль мышечной системы. Скелетная мускулатура. Общее представление об энергообеспечении мышечного сокращения.
Тип работы: контрольная работа. Добавлен: 15.05.13. Год: 2013. Страниц: 9. Уникальность по antiplagiat.ru:

      Роль мышечной системы. Скелетная мускулатура. Общее представление об энергообеспечении мышечного сокращения.

Роль мышечной системы.
Опорно-двигательный аппарат человека состоит из костной и мышечной системы. Мышцы, обладая способностью сокращаться, являются основным активным элементом. Мышечная система играет колоссальную роль в строении организма и выполняет такие функции, как сохранение равновесия тела, осуществление движения, транспортировку крови и пищи по организму. В мышечных тканях происходит преобразование химической энергии в тепловую и механическую. Система мышц очень хорошо развита у позвоночных и зачастую составляет одну треть – половину массы тела всего организма. Мышечная система человека состоит из 600 скелетных мышц, которые подразделяются на группы.
Пучки волокон мышц, окруженные соединительной оболочкой, часто располагаются параллельными рядами. От длинны этих волокон зависит и длина мышцы. Сама мышца покрыта оболочкой – фасцией. Мышцы прикрепляются к двум разным костям, таким образом, образуя своего рода рычаг.
Сокращение мышцы сопровождается ее укорочением. Активное сокращение мышечной ткани наблюдается под влиянием нервной системы и воздействие некоторых веществ. Выделяют два типа ткани, различаемы по строению: гладкую и поперечно – полосатую.
Отличительной особенностью гладкой мышечной ткани является ее клеточное строение. Эта ткань образует мышечные оболочки стенок многих внутренних органов, кровеносных и лимфатических сосудов.
Поперечно — полосатая мышечная ткань является главным структурно — функциональным составляющим скелетной мышцы. Поперечная — полосатая , различима только под микроскопом, объясняется своеобразным строением миофибриллы — сократительного элемента волокон мышц. Сокращение мышц делает возможным движение тела, а также способствует улучшению крово — и лимфаобращению , микроциркуляции , обменным процессам в органах и тканях.
Для нормального функционирования и развития мышц необходимо движение. А его отсутствие приводит к нарушению обмена веществ, снижению регулирующей и координирующей способностей нервной системы, а также ослаблению иммунитета.
Движение также значительно влияет на общее развитие и форму костей и прикрепленными к ним мышцами. Сокращение стимулирует мышечную ткань организма, оказывает серьезнейшее воздействие на увеличение массы и формирование структуры мышц.
У взрослого мужчины мышечная масса составляет около 29-30 кг, а у женщины — не более 16-18 кг.

Скелетная мускулатура.
Вся скелетная мускулатура состоит из поперечно – полосатых мышц. Скелетные мышцы снаружи покрыты плотной соединительно-тканной оболочкой. В каждой мышцы различают активную часть( тело мышцы) и пассивную ( сухожилие). По форме мышцы делятся на длинные, короткие и широкие. Длинные находятся главным образом на конечностях, широкие – на туловище. По направлению мышечных волокон различают мышцы с косым направлением волокон, с прямым ( параллельным) ходом волокон и перистым, веерообразным. Мышцы , действие которых противоположно, называют антагонистами, однонаправлено – синергистами. Одни и те же мышцы могут выступать в различных ситуациях в том и другом качестве.
Сила мышц оценивается весом груза, который она при максимальном возбуждении способна удерживать, не изменяя своей длины. Сила мышц зависит от суммы сил мышечных волокон ( их сократительной способности) ; количества мышечных волокон в мышце и количества функциональных единиц, одновременно возбуждающих при развитии напряжения; исходной длины мышцы ( предварительно растянутая мышца развивает большую силу); характера регуляторных влияний; условий взаимодействия с костями скелета.
Сократительная способность мышцы характеризуется ее абсолютной силой ( сила, приходящая на 1 см.кв поперечного сечения мышечных волокон). Для расчета этого показателя силу мышцы делят на площадь ее физиологического поперечника ( т.е на сумму площадей всех мышечных волокон, составляющих мышцу). У мышц с веерообразным ( перистым ) ходом волокон физиологических поперечник больше, чем у мышц с параллельным расположением волокон, и поэтому сила их существенно больше. Для примера, абсолютная сила мышц ( в кг на 1 см. кв ) в среднем у человека: икроножная- 6,24, разгибатели шеи – 9.0, жевательная – 10.0, трехглавая плеча – 16.8.
При титаническом ( сильном и длительном) напряжении мышца развивает значительное усиление. Одиночное мышечное волокно способно развивать усилие приблизительно в 200 – 300 мг. Мышечная же система человека может реализовать напряжение в 20- 30 т. Рекордная сила, которую может проявить икроножная мышца при выполнении специальных упражнений при разгибании стопы, может доходить до 500 кгс.
Работа мышцы. В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Различают внутреннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении, движением катионов и анионов как при возбуждении, так и в процессе восстановления исходного состояния; превращение энергии при эндотермических ресинтезах. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организма( динамическая работа) в пространстве. Она характеризуется коэффициентом полезного действия ( КПД) мышечной системы, т.е. отношением производимой работы к общим энергетическим затратам ( для мышц человека КПД составляет 15 – 20% , у физических развитых тренированных людей этот показатель несколько выше) .
При статических усилиях можно говорить не о работе, как таковой, с точки зрения физики, а о работе, которую с физиологической точки зрения следует оценивать энергетическими затратами организма, его функциональных систем, расходуемыми на поддержание напряжения сокращения мышц. В процессе двигательной деятельности динамические и статические мышечные сокращения взаимодействуют: динамическая работа может быть эффективной в том случае, если статическое напряжение определенных мышц обеспечивают определенную рабочую позу.

Общее представление об энергообеспечении
мышечного сокращения.
Источника энергии для мышечного сокращения служат особые органические вещества, богатые потенциальной энергией и способные, расщепляясь, отдавать ее. Это – аденозинтрифосфорная кислота ( АТФ) , креатинофосфорная кислота (КрФ), углеводы , жиры и белки. Особую роль среди них играет АТФ, именно при ее расщеплении мышцы непосредственно получают энергию, остальные виды энергетических веществ используются в процессе биохимических реакций для восстановления АТФ. Так как количества АТФ в мышцах сравнительно невелико, запас энергии, заключенный в ней, быстро исчерпается. Тогда вступают в дейсвие КрФ и кликоген ( его называют животным сахаром или крахмалом), выделяемая при их расщеплении энергия восстанавливает молекулу, а с ней и энергию АТФ. Когда же запасы энергии АТФ , КрФ и кликогена исчерпываются, используются новые источники энергии: углеводы, жиры и белки, которые поступают к мышцам с током крови и окисляются, выделяя энергию на восстановления АТФ.
Таким образом, становится очевидно, что многообразные функции мышечной системы обеспечивают движения человека, вертикальное положение его тела, фиксацию внутренних органов в определенном положении, дыхательные движения, усиление кровообращения и лимфообращения ( мышечный насос) , теплорегуляцию организма вместе с другими системами. Движения играют существенную роль во взаимодействии человека с внешней средой.
У человека насчитывается более 600 различных мышц. Они составляют у мужчин 35 — 40 % веса тела ( у спортсменов – 50% и более), у женщин – несколько меньше. Механическая деятельность мышц осуществляется в результате способности мышечных волокон переходить в состоянии возбуждения, т.е. в деятельное состояние под влиянием биотоков ( импульсов), идущих к мышцам по нервным волокнам. Возбуждение мышечных волокон представляет собой сложную систему энергетических, химических, структурных и иных изменений в клетках, обеспечивающих специфическую работу мышечной ткани. Работа мышц реализуется за счет их напряжения или сокращения. Напряжение происходит без изменений длины мышцы ( статическая работа), сокращение происходит с уменьшением длины ее ( динамическая работа). Чаще всего мышцы работают в смешанном ( ауксотоническом) режиме, одновременно напрягаясь и сокращаясь по длине.
При работе мышцы развивают определенную силу, которую можно определенным образом измерить. Вспомним, что сила зависит от количества мышечных волокон и их поперечного сечения, а также от эластичности и исходной длины отдельной мышцы. Систематическая физическая тренировка увеличивает силу мышц в том числе и за счет увеличения их эластичности.
Как уже говорилось, все мышцы человека в целом содержат около 300 млн мышечных волокон. Если деятельность волокон всех мышц направить в одну сторону, то при одновременном сокращении они могли бы развить силу в 25 – 30 т. Костная и мышечная системы функционально естественным образом связаны и вместе выполняют опорно — двигательную функцию. При различных видах сокращения скелетной мускулатуры происходит перемещение тела и его звеньев в пространстве, при этом огромное значение имеет состояние связочно – суставных образований, о которых говорилось выше.

      Методика составления и проведе ния простейших самостоятельных занятий физиче скими упражнениями

Здоровье – бесценное достояние не только каждого человека, но и всего общества. Это основное условие и залог полноценной и счастливой жизни. Какой бы совершенной ни была медицина, она не может избавить каждого от всех болезней. Человек – сам творец своего здоровья, за которое надо бороться. К сожалению, многие люди не соблюдают простейших, обоснованных наукой норм здорового образа жизни. Одни становятся жертвами малоподвижности вызывающей преждевременное старение , другие излишествуют в еде с почти неизбежным в этих случаях развитием ожирения, склероза сосудов, а у некоторых — сахарного диабета, третьи не умеют отдыхать, отвлекаться от производственных и бытовых забот, вечно беспокойны, нервны, страдают бессонницей, что в конечном итоге приводит к многочисленным заболеваниям внутренних органов. В связи с этим важной задачей человека и общества является привитие каждому мысли о заботе и оберегании собственного здоровья. Только четко спланированные мероприятия по укреплению физического состояния способны устранить или хотя бы ослабить пагубное воздействие окружающей среды и вредных привычек.
Для того, чтобы лучше понять, как именно стоит построить систему занятий физической культурой для спасения собственного организма, следует сначала четко уяснить себе, что мы хотим восстановить и с чего следует начать. Конечной целью любого оздоровительного процесса является достижения состояние здоровья.
Закаливание

Один из наиболее простых и доступных способов закаливания — воздушные ванны. В тёплое время года при хорошей погоде держите окно в комнате постоянно открытым (зимой проветривайте её каждый час и в последний раз — перед сном). Проветрив комнату и доведя температуру воздуха до 20 С, разденьтесь до трусов или купальника и оставайтесь так минут пять. Причём полезнее не стоять без движения, а заняться гимнастикой. После воздушной ванны оботритесь влажным полотенцем. По мере привыкания к температуре раз в 3—5 дней снижайте её на градус, и постепенно доведите до 8— 12 °С. А время после третьей процедуры ежедневно увеличивайте на несколько минут, чтобы в итоге ваша воздушная ванна длилась чуть более получаса. Используйте это время для занятий физкультурой, аэробикой или гимнастикой.
Теперь самое время перейти к ещё более эффективной форме закаливания — обливанию. В первую неделю прохладной (20 °С) водой из душа или кувшина обливайте плечи, предплечья и кисти рук. После обливания лёгкими массирующими движениями растирайте кожу махровым полотенцем. Со второй недели обливайте и ноги, а с третьей — всё тело, соблюдая очерёдность: сначала руки и ноги, затем струю воды направьте на нижнюю часть туловища сзади и спереди, после этого обливайте грудь и спину. Затем пустите в ход полотенце. Отсчитайте ещё 7 дней от начала полного обливания и с этих пор через каждые три процедуры на градус снижайте температуру воды, доведя её до 12—14 °С. Несомненно, вы по чувствуете прилив сил и забудете о простудах.
Физические упражнения.
Физические упражнения окажут положительное воздействие, если при занятиях будут соблюдаться определенные правила. Необходимо следить за состоянием здоровья – это нужно для того, чтобы не причинить себе вреда, занимаясь физическими упражнениями. Если имеются нарушения со стороны сердечно -сосудистой с истемы, упражнения, требующие существенного напряжения, могут привести к ухудшению деятельности сердца.

Занятия физическими упражнениями стимулирует обмен веществ, увеличивается сила, подвижность и уравновешенность нервных процессов. В связи с этим возрастает гигиеническое значение физических упражнений, если они проводятся на открытом воздухе. В этих условиях повышается их общий оздоровительный эффект, они оказывают закаливающее действие, особенно, если занятия проводятся при низких температурах воздуха. При этом улучшаются такие показатели физического развития, как экскурсия грудной клетки, жизненная ёмкость легких. При проведении занятий в условиях холода совершенствуется теплорегуляционная функция, понижается чувствительность к холоду, уменьшается возможность возникновения простудных заболеваний. Помимо благоприятного воздействия холодного воздуха на здоровье отмечается повышение эффективности тренир овок, что объясняется большой интенсивностью и плотностью занятий физическими упражнениями. Говоря о физических упражнений, нельзя не вспомнить об утренней гимнастике и роли физкультурной паузы. Целью утренней гимнастики является ускорение перехода организма от сна к бодрствованию, к предстоящей работе и оказание общего оздоровительного воздействия.

Самый простой вариант тренировки кровообращения во всём организме – бег трусцой ежедневно по 30 – 60 мин. Можно заменить его часовой прогулкой быстрым шагом в парке или сквере. Хороший результат дают также езда на велосипеде, плавание и фитнесс. Не стоит забывать и об утренней зарядке вот некоторые из них, наиболее эффективные:

1. Ноги врозь, руки к плечам. Поднимаем руки вверх, хорошо потянувшись — вдох, опускаем к плечам — выдох.
2. Ноги вместе, руки перед грудью, пальцы рук соединены «в замок». Не разжимая пальцев, выпрямляем руки влево, поворачиваем их вправо ладонями кверху. Повторяем упражнение в другую сторону. Дыхание произвольное.
3. Ноги на ширине плеч, руки в стороны. Начинаем круговые движения выпрямленными руками, одн
и т.д.

Перейти к полному тексту работы

Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru

Смотреть полный текст работы бесплатно

Смотреть похожие работы

* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.

Физиологические свойства скелетных мышц. Функциональная характеристика неисчерченных (гладких) мышц. Виды и режимы сокращений скелетных мышц. Одиночное мышечное сокращение, его фазы. Моторная единица

Скелетная мышца состоит из пучков поперечно полосатых волокон. Эти пучки идущие параллельно друг другу между собой связываются рыхлой соединительной тканью и образуют пучки первого порядка. Несколько таких пучков соединяясь между собой образуют пучки второго порядка и так далее .Эти мышечные пучки объединяются соединительной тканью и образуют мышечное брюшко. Скелетная мускулатура построена из поперечно полосатой мышечной ткани . Скелетная мускулатура является произвольной ,так как ее сокращения могут возникать под влиянием нейронов двигательной зоны коры головного мозга. Поперечно полосатая мышечная ткань из миотом. Поперечно полосатая мышечное волокно представляет собой удлиненное цилиндрическое тело , достигающее в крупных мышцах до 10 сантиметров и более ,а диаметром от 12 до 17мкм.Скелетные мышцы — это поперечно полосатые мышцы. Возбуждение и сокращение этих мышц вызывается нервными импульсами , которые поступают из центральной нервной системы. Раздражение мышцы вызывает ее сокращение. Она становится короче и толще , но объем не теряет . Изменение длинны , формы и напряжения называется мышечным сокращением . Длительность сокращения одной и той же мышцы может быть разным в зависимости от ее функционального состояния, от температуры и других условий. Например при увеличении температуры длительность сокращения уменьшается, а при утомлении увеличивается.

Существует несколько видов сокращения: Изометрическое, изотоническое и аутоническое.

Изометрическое — сокращение мышц это когда длинна мышечного волокна остается неизменной, а напряжение возрастает.

Изотоническое сокращение -это когда волокна мышцы укорачиваются, а напряжение в них не меняется.

Аутоническое сокращениеэто сокращения ,в которых изменяется напряжение и длинна мышечного волокна. Поперечно полосатая мускулатура обладает тремя физиологическими свойствами:

Возбудимость это способность мышц отвечать на раздражение .

Сократимость :это способность сокращаться или изменять напряжение при возбуждении .

Проводимость :это скорость проведения возбуждения вдоль мышечного волокна.

Мышечные сокращения могут быть фазными и не фазными.

Фазные к ним относятся

— одиночное мышечное сокращение- кратковременное одиночное раздражение.

-тетанус- чтобы вызвать тетаническое сокращение мышц для этого необходимо в период, кода еще не закончился период предыдущего сокращения нанести следующее раздражение. Тетанус это сумма одиночных сокращений. Выделяют : а)зубчатый тетанус (возникает тогда когда импульс раздражения возникает в фазу расслабления) б)гладкий тетанус (возникает когда импульс приходит на пике раздражения )

Нефазные мышечные сокращения

тонус — длительное, суммированное постоянно существующее напряжение мышц. Оно возникает еще во внутриутробном периоде и сопровождает организм на весь период жизни.

контрактура- длительное , суммированное сокращение с растянутым периодом расслабления (трупное окоченение).

Одиночное мышечное сокращение — это ответная реакция мышечного волокна на раздражение (такое сокращение мышечного волокна возможно произвести только в искусственно созданных условиях ,в природе мышцы не отвечают одиночным мышечным сокращением)

Одиночное мышечное сокращение имеет несколько фаз:

1. латентная фаза- это промежуток времени от начала раздражения до появления видимого сокращения (чем сильнее раздражение тем короче латентный период)

2. укороченная фаза(фаза сокращения)- это изменение напряжения или укорочения.

3. фаза расслабления- это фаза сокращения напряжения мышц.

4. фаза остаточных колебаний.

Мышечные волокна обладают различной возбудимостью ,а величина одиночного сокращения зависит от силы раздражения. На максимальное (пороговое )одиночное мышечное раздражение каждое мышечное волокно возбуждается и сокращается максимально .Скелетная мышца состоит из большого количества мышечных волокон и амплитуда ее одиночного сокращения — это сумма амплитуд сократительных ответов волокон. Мышечные волокна обладают различной возбудимостью -отсюда сила одиночного сокращения всей скелетной мышцы будет зависеть от силы раздражение ,чем сильнее раздражение тем сильнее одиночное сокращение. На максимальное (пороговое) раздражение возбуждаться будут только самые возбудимые волокна, в таких условиях сила раздражения будет низкой. Если сила раздражения увеличивается, то амплитуда сокращения мышечных волокон так же будет увеличиваться до того момента пока не станет пороговой. Когда сила раздражения достигла пороговой, после этого амплитуда сокращений уже не будет изменяться.

Моторная единица— это группа мышечных волокон ,которые контактируют с нервными волокнами . в состав моторной единицы может входить до 3000 мышечных волокон .возбуждение мышечного волокна входящего в состав одной моторной единицы происходит одновременно. Если мышечные волокна находятся в разных моторных единицах ,то они могут возбуждаться не одновременно. Существует два вида моторных единиц: быстрые и медленные отличаются они между собой длительностью потенциала действия. Потенциал действия — это биоритмические явления , которые отражают изменение разностей потенциалов на цитоплазме мембраны , которая присуща возбуждению. В медленных моторных единицах длительность потенциала действия в два раза больше, волна сокращения в пять раз больше, а скорость проведения в два раза меньше. Существует еще так называемый смешанный тип моторной единицы в скелетных мышцах . смешанный тип моторной единицы включается в работу попеременно , за счет этого происходят быстрые движения ,так же могут быть и медленные сокращения -они поддерживают тоническое напряжение в мышцах.

Основой строения гладкой мышцы является гладкомышечная клетка .Она вытянутая, веретенообразная с заостренными концами и покрыта клеточной оболочкой. Клетки эти плотно прикреплены к друг другу в следствии чего образуют слои и группы ,соединенные между собой неоформленной соединительной тканью. В цитоплазме гладкомышечной клетки находятся миофибриллы. Это органеллы которые располагаются по периферии вдоль оси, под микроскопом видно что они состоят из тонких нитей однородной структуры. Миофибриллы являются сократительным элементом мышцы. При каждом сокращении мышцы происходит сборка толстых нитей из легких и тяжелых нитей миозина. Миозин -это один из важнейших сократительных белков. В сократительный аппарат гладкой мускулатуры входят стабильные актиновые нити , они прикрепляются к плотным тельцам .

Неисчерченные гладкие мышцы обладают тремя свойствами, так же как и скелетные мышцы: 1.возбудимостью. 2проводимостью. 3.сократимостью., но эти свойства несколько отличаются. Например — у гладкой мускулатуры возбудимость ниже. Сокращение у гладкой мускулатуры сильнее и продолжительнее,. Возбуждение в гладких мышцах происходит гораздо медленнее чем в скелетных мышцах. Гладкие мышцы очень пластичны, они могут находиться в состоянии растяжения при этом не изменяя своего напряжения. Фаза расслабление у гладкой мускулатуры после ее сокращения протекает дольше. Сокращение гладких мышц -тоническое . если воздействие на гладкую мускулатуру редкое и ритмическое , то наступает длительное стойкое сокращение похожее на тетанус . эти мышцы способны при минимальной затрате энергии и веществ могут находиться в состоянии тонического напряжения . примером этого могут быть гладкие мышцы сфинктеров и мочевого пузыря, они могут выдерживать напряжение до десятков минут и нескольких часов. Это обеспечивает их наполнение . в течении всей жизни человека гладкая мускулатура стенок кровеносных сосудов находится в постоянном тонусе поддерживая кровяное давление. Гладкие мышцы могут сокращаться под влиянием импульсов ,которые возникают в нервно-мышечных элементах органов .гладкие мышцы делятся на :

1. мышцы со спонтанной активностью(автоматией)- их активность зависит от того насколько интенсивен обмен веществ

2. мышцы с не спонтанной активностью.- они сокращаются ,только при воздействии вегетативных нервах и при гуморальных влияниях.

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Ионы кальция

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

  • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
  • этих веществ по разные стороны мембраны;
  • скольжения нитей, укорачивающих миофибриллы;
  • работы насоса кальция, действующего для расслабления.

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Похожих постов не найдено

Комментариев нет, будьте первым кто его оставит

Комментарии закрыты.