Сокращение саркомера мышечного волокна мышцы, сокращение саркомера мышечного волокна мышцы

Содержание
  1. строение мышечных волокон
  2. Механизмы сокращения мышечного волокна
  3. Механизмы сокращения мышечного волокна
  4. Источник энергии для сокращения мышечных волокон
  5. Режимы и типы мышечных сокращений
  6. МЕХАНИЗМЫ СОКРАЩЕНИЯ И РАССЛАБЛЕНИЯ МЫШЕЧНОГО ВОЛОКНА
  7. Сокращение саркомера мышечного волокна мышцы
  8. Физиология возбуждения. Мышечное сокращение. Особенности строения мышц. Строение мышечного волокна. Строение саркомера. Моторная единица.

строение мышечных волокон

Вы, конечно же, догадываетесь, что все внутренние элементы мышечной клетки не болтаются в воздухе, а погружены в саркоплазму. Наверняка вы помните из школы, что в клетках есть цитоплазма — ну вот, это почти то же самое, только в мышечных клетках эту цитоплазму называют саркоплазмой.

Так вот, в саркоплазме обитает множество митохондрий, которые занимают порядка 30-35% от всей массы мышечного волокна. По своей сути митохондрии — это малюсенькие заводики, точнее, даже электростанции, в которых проходят процессы обмена веществ и скапливаются вещества богатые энергией, среди которых гликоген, жиры, фосфаты и еще много чего нужного и полезного для обеспечения энергетических потребностей всего мышечного волокна. Понятно, что таких мини-заводиков в клетке не один, не два и не три — их сотни и тысячи. Для удобства и скорейшей доставки энергии к «потребителю» митохондрии располагаются вблизи мест, где эта энергия может потребоваться. В нашем случае, митохондрии цепочками выстраиваются вдоль тонких мышечных нитей, называемых миофибриллами. Именно миофибриллы и есть те самые сократительные элементы каждого мышечного волокна, именно благодаря им, наши мышцы сокращаются и расслабляются.

Миофибриллы, как и само мышечное волокно, тоненькие и длинные. Их длина равна длине самого мышечного волокна и занимают они порядка 50% от веса всей мышечной клетки. Получается, что толщина самих мышечных волокон главным образом будет зависеть от количества находящихся в нем миофибрилл и от их поперечного сечения.

Но миофибриллы — это не одно целое, они состоят из малюююсеньких последовательно собранных кусочков, которые называются саркомерами. Вся эта конструкция выглядит примерно вот так:

Это на рисунке саркомеры такие большие, а на самом деле их длина в состоянии покоя равна всего то 0,002 мм! Значит для того, что бы собрать их в одну миофибриллу длиной 10-15 сантиметров потребуется…….. оооо, великие тыщи саркомеров. Если интересно, сами посчитайте.

Так, давайте остановимся на секундочку и подытожим:

мышцы состоят из мышечных волокон, внутри мышечных волокон находятся миофибриллы, миофибриллы состоят из саркомеров. В общем, сундук на дубе, в сундуке заяц, в зайце утка, в утке яйцо, в яйце игла. Примерно так. Продолжаем.

Саркомеры очень хитро устроены. Они состоят из двух типов белковых нитей (филаментов). Те, которые потолще — миозиновые, а те, что потоньше — актиновые. Посмотрите на картинку, так понятней будет:

Из миозиновых нитей с обеих сторон выступают отростки – эдакие миозиновые мостики.

Так вот, реагируя на нервный сигнал и последующую химическую реакцию, эти отростки ненадолго пристыковываются к актиновым нитям примерно под углом 90° и потом проталкивают актиновые нити вдоль себя, до угла мостиков примерно в 45°.

Все это очень напоминает гребцов в лодке: на счет раз — весла опускаются в воду (мостики пристыковываются), на счет два – происходит гребок (мостики оказываются под углом 45°), и на счет три — весла поднимаются из воды (мостики отсоединяются).

Именно таким образом и происходит сокращение саркомера, и как следствие — мышечного волокна, и как следствие — мышцы.

Но, за один такой «гребок» саркомеру удается укоротиться лишь на 1% своей длины, поэтому для того, что бы эффективно сократиться, нашей мышце приходится «грябать и грябать», так что без «рулевого» тут никак не обойтись. Этим «рулевым» выступает наша нервная система, которая в зависимости от требуемой величины мышечного напряжения, подает сигналы (нервные импульсы) с частотой от 7-ми до 50-ти и более «гребков» в секунду.

Понятно, что чем больше мостиков одновременно сможет присоединиться к актину, чем мощнее и сильнее будет один «гребок». Так вот, считается, что наиболее благоприятная длина саркомера для образования мостиков около 0,0019-0,0022мм, т.е. длина равная примерно длине саркомера в состоянии покоя. Если же мышца сильно удлиняется, т.е. растягивается (саркомер удлиняется до 0,0024-0,0035 мм), то количество контактирующих с актином миозиновых мостиков уменьшается и уменьшается, а значит, уменьшается и мышечное напряжение. Ну, правильно, получается, что некоторым «веслам» цепляться уже не за что. Посмотрите на рисунок:

А вот при слишком сильном укорачивании мышцы, т.е. когда длина саркомера становится 0,0016-0,0013мм, концы актиновых нитей все глубже поникают между нитями миозина и начинают мешать друг другу. В итоге образовывать новые мостики становиться все сложнее и сложнее, и напряжение мышцы в этом случае опять же уменьшается.

Получается, что максимум силы достигается при длине саркомера равной его длине в состоянии покоя. Вот поэтому-то у нас и не получается развить максимальную силу в начальной или конечной фазе движения.

На максимальную силу так же влияет и скорость сокращения мышцы. Согласитесь, ведь логично, что при НЕбольшой скорости движения в работающей мышце можно успеть создать большее количество мостиков, чем при высокой скорости сокращения, так как миозиновые нити просто могут не успевать образовывать большое их количество. Точнее мостики-то образовываться будут, но в недостаточном единовременном количестве для того, что бы «грести» с максимальной силой.

Так вот, целенаправленные физические занятия приводят к увеличению количества миофибрилл, к увеличению их поперечного сечения, а так же к увеличению размеров и количества мини-заводиков (митохондрий) снабжающих их энергией. Увеличиваются и запасы самой энергии (гликогена, фосфатов и т.д.). Вначале это сказывается на мышечной силе, а в последствии и на толщине мышечного волокна, что и приводит к общему увеличению (гипертрофии) поперечного сечения мышцы в целом.

Другими словами, сила и мышечная масса увеличиваются вовсе не пропорционально. Если, например, мышечная масса увеличивается в два раза, то мышечная сила при этом увеличится аж в целых три раза.

Сразу же оговорюсь, что при мышечной гипертрофии происходит именно утолщение мышечных волокон без изменения из количества, так как количество мышечных волокон в одной, отдельно взятой мышце обуславливается генетически, и не меняется по ходу тренировок.

Именно поэтому и существуют люди с хорошо развитыми руками или ногами, а то и всем телом. Им просто повезло, у них оказалось чуть большим количество мышечных волокон в какой-то мышце или мышечной группе, а значит у них чуть больший потенциал для их роста. Но, вот используют ли они этот потенциал для развития мышц или нет — это уже совсем другой вопрос…

Продолжим. Потихонечку подбираемся к вопросу о том, чем же питаются наши мышцы, и откуда они берут энергию для своего сокращения. Уууууу, тема интересная, но сразу же оговорюсь – сложная. В общем, буду пытаться, как всегда, объяснять все по-простому. Итак, поехали.

Механизмы сокращения мышечного волокна

Механизмы сокращения мышечного волокна

В покоящихся мы­шечных волокнах при отсутствии импульсации мотонейрона по­перечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что бло­кирует участки актина, способные взаимодействовать с попере­чными мостиками миозина. Тропонин тормозит миозин — АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.

При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать (рис. 4.3.).

Рис.4.3. Сокращение мышцы. А — Поперечные мостики между актином и миозином разомкнуты. Мышца находится в расслабленном состоянии.
Б — Замыкание поперечных мостиков между актином и миозином. Совершение головками мостиков гребковых движений по направлению к центру саркомера. Скольжение актиновых нитей вдоль миозиновых, укорочение саркомера, развитие тяги.

Эти данные явились основой для создания теории, объясняющей сокра­щение мышцы механизмом скольжения (теорией скольжения) тон­ких актиновых миофиламентов вдоль толстых миозиновых. В ре­зультате этого миозиновые миофиламенты втягиваются между окру­жающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.

Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазмати-ческого ретикулума и освобождение из них ионов кальция. Свобод­ные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимо­действие сократительных белков и укорочение мышечного волокна называют «электромеханическим сопряжением». Временная последо­вательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 4.4.

Рис.4.4. Схема временной последовательности развития
потенциала действия (ПД), освобождения ионов кальция (Са2+) и развития изометрического сокращения мышцы.

При концентрации ионов Са 2+ в межмиофибриллярном пространстве ниже 10″ тропомиозин располагается таким образом, что блокирует прикрепление поперечных миозиновых мостиков к нитям актина. По­перечные мостики миозина не взаимодействуют с нитями актина. Продвижение относительно друг друга нитей актина и миозина отсут­ствует. Поэтому мышечное волокно находится в расслабленном состо­янии. При возбуждении волокна Са 2+ выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са 2+ молекула тропонина изменяет свою форму таким образом, что вытал­кивает тропомиозин в желобок между двумя нитями актина, освобож­дая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают «гребковые» движения в сторону центра саркомера происходит «втягивание» актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

Источник энергии для сокращения мышечных волокон

( см. также 4.1.4. Энергетика мышцы )
Источником энергии для сокращения мышечных волокон служит АТФ. С инактивацией тропонина ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. Фермент миозиновая АТФ-аза гидролизует АТФ, расположенный на головке миозина, что обеспечивает энергией поперечные мостики. Освобождающиеся при гидролизе АТФ молекула АДФ и неоргани­ческий фосфат используются для последующего ресинтеза АТФ. На миозиновом поперечном мостике образуется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продол­жается до тех пор, пока концентрация кальция внутри миофибрилл не снижается до подпороговой величины. Тогда мышечные волокна начинают расслабляться.

При однократном движении поперечных мостиков вдоль актино­вых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического со­кращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение голо­вок миозина может втянуть нити актина вдоль миозиновых и со­вершить требуемое укорочение целой мышцы. Напряжение, разви­ваемое мышечным волокном, зависит от числа одновременно зам­кнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорос­ти укорочения мышцы число одновременно прикрепленных попере­чных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличе­нием скорости ее укорочения.

При одиночном сокращении процесс укорочения мышечного во­локна заканчивается через 15-50 мс, так как активирующие его ионы кальция возвращаются при помощи кальциевого насоса в цистерны саркоплазматического ретикулума. Происходит расслабле­ние мышцы.

Поскольку возврат ионов кальция в цистерны саркоплазматичес­кого ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. При снижении содер­жания ионов кальция до подпорогового уровня (ниже 10 V) моле­кулы тропонина принимают форму, характерную для состояния покоя. При этом вновь тропомиозин блокирует участки для при­крепления поперечных мостиков к нитям актина. Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повто­ряется. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.

Режимы и типы мышечных сокращений

3.1. Одиночное сокращени

Режим сокращений мы­шечных волокон определяется частотой импульсации мотонейронов. Механический ответ мышечного волокна или отдельной мышцы на однократное их раздражение называется одиночным сокращением .

При одиночном сокращении выделяют:

1. Фазу развития напряжения или укорочения;

2. Фазу расслабления или удлинения (рис.4.5.).

Рис.4.5. Развитие во времени потенциала действия (А) и изометрического сокращения мышцы, приводящей большой палец кисти (Б).
1 — фаза развития напряжения; 2 — фаза расслабления.

Фаза расслабления продолжается примерно в два раза дольше, чем фаза напряжения. Длительность этих фаз зависит от морфофункциональных свойств мышечного волокна: у наиболее быстро сокращающихся волокон глазных мышц фаза напряжения составляет 7-10 мс, а у наиболее медленных волокон камбаловидной мышцы — 50-100 мс.

В естественных условиях мышечные волокна двигательной едини­цы и скелетная мышца в целом работают в режиме одиночного сокращения только в том случае, когда длительность интервала между последовательными импульсами мотонейрона равна или пре­вышает длительность одиночного сокращения иннервируемых им мышечных волокон. Так, режим одиночного сокращения медленных волокон камбаловидной мышцы человека обеспечивается при частоте импульсации мотонейрона менее 10 имп/с, а быстрых волокон глазодвигательных мышц — при частоте импульсации мотонейрона менее 50 имп/с.

В режиме одиночного сокращения мышца способна работать дли­тельное время без развития утомления. Однако в связи с тем, что длительность одиночного сокращения невелика, развиваемое мы­шечными волокнами напряжение не достигает максимально возмож­ных величин. При относительно высокой частоте импульсации мо­тонейронов каждый последующий раздражающий импульс приходит­ся на фазу предшествующего напряжения волокона, то есть до того момента, когда оно начинает расслабляться. В этом случае механи­ческие эффекты каждого предыдущего сокращения суммируются с последующим. Причем величина механического ответа на каждый последующий импульс меньше, чем на предыдущий. После несколь­ких первых импульсов последующие ответы мышечных волокон не изменяют достигнутого напряжения, а лишь поддерживают его. Та­кой режим сокращения называется гладким тетанусом (рис.4.6.). В подобном режиме двигательные единицы мышц человека работают при развитии максимальных изометрических усилий. При гладком тетанусе развиваемое ДЕ напряжение в 2-4 раза больше, чем при одиночных сокращениях.

Рис.4.6. Одиночные (а) и тетанические (б,в,г,д) сокращения скелетной мышцы. Накладывание волн сокращения друг на друга и образование тетануса при частотах раздражения: 5 -15 раз/с; в — 20 раз/с; г — 25 раз/с; д — более 40 раз в 1 сек (гладкий тетанус).

В тех случаях, когда промежутки между последовательными им­пульсами мотонейрона меньше времени полного цикла одиночного сокращения, но больше длительности фазы напряжения, сила со­кращения ДЕ колеблется. Этот режим сокращения называется зуб­ чатым тетанусом (рис. 4.6.).

Гладкий тетанус для быстрых и медленных мыши достигается при разных частотах импульсации мотонейронов. Зависит это от времени одиночного сокращения. Так, гладкий тетанус для быстрой глазо­двигательной мышцы проявляется при частотах свыше 150-200 имп/с, а у медленной камбаловидной мышцы — при частоте около 30 имп/с. В режиме тетанического сокращения мышца способна работать лишь короткое время. Это объясняется тем, что из-за отсутствия периода расслабления она не может восстановить свой энергетический потенциал и работает как бы «в долг».

Механическая реакция целой мышцы при ее возбуждении

Механическая реакция целой мышцы при ее возбуждении выра­жается в двух формах — в развитии напряжения и в укорочении. В естественных условиях деятельности в организме человека степень укорочения мышцы может быть различной.

По величине укорочения различают три типа мышечного сокращения:

1. Изотоничес­кий — это сокращение мышцы, при которой ее волокна укорачи­ваются при постоянной внешней нагрузке. В реальных движениях чисто изотоническое сокращение практически отсутствует;

2. Изо­метрический — это тип активации мышцы, при котором она развивает напряжение без изменения своей длины. Изометрическое сокращение лежит в основе статической работы;

3. Ауксотонический или анизотонический тип — это режим, в котором мыш­ца развивает напряжение и укорачивается. Именно такие сокраще­ния имеют место в организме при естественных локомоциях — ходьбе, беге и т.д.

3.2. Динамическое сокращени

Изотонический и анизотонический типы сокра­щения лежат в основе динамической работы локомоторного аппа­рата человека.

При динамической работе выделяют:

1. Концентрический тип сокращения — когда внешняя нагрузка меньше, чем развива­емое мышцей напряжение. При этом она укорачивается и вызывает движение;

2. Эксцентрический тип сокращения — когда внешняя нагрузка больше, чем напряжение мышцы. В этих условиях мышца, напрягаясь, все же растягивается (удлиняется), совершая при этом отрицательную (уступающую) динамическую работу

МЕХАНИЗМЫ СОКРАЩЕНИЯ И РАССЛАБЛЕНИЯ МЫШЕЧНОГО ВОЛОКНА

При произвольной внутренней команде сокращение мышцы че­ловека начинается примерно через 0.05 с (50 мс). За это время мотор­ная команда передается от коры больших полушарий к мотонейро­нам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора пре­одолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный им пульс вызывает перемещение синаптических пузырьков к преси­наптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мем­брану чрезвычайно кратковременно, после чего он разрушается ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо­вания запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхоли­на превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего на­рушается проведение возбуждения через нервно-мышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся всинаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды — потенциал концевой пластинки (ПКП).

При достаточной частоте нервных импульсов ПКП достигает по­рогового значения и на мышечной мембране развивается мышечный потенциал действия. Он (со скоростью 5 ) распростра­няется вдоль по поверхности мышечного волокна и заходите поперечные

трубочки внутрь волокна. Повышая проницаемость клеточ­ных мембран, потенциал действия вызывает выход из цистерн и тру­бочек саркоплазматического ретикулума ионов Са , которые прони­кают в миофибриллы, к центрам связывания этих ионов на молеку­лах актина.

Под влиянием Са длинные молекулы тропомиозина проворачи­ваются вдоль оси и скрываются в желобки между сферическими мо­лекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей ак­тина вдоль нитей миозина с обоих концов саркомера к его центру, т. е. механическую реакцию мышечного волокна (рис. 10).

Энергия гребкового движения одного мостика производит пере­мещение на 1 % длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са . Такой процесс происходит в ре­зультате активации в этот момент молекул миозина. Миозин приоб­ретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению

Рис. 10. Схема электромеханической связи в мышечном волокне

На А: состояние покоя, на Б — возбуждение и сокращение

да — потенциал действия, мм — мембрана мышечного волокна,

п _ поперечные трубочки, т — продольные трубочки и цистерны с ионами

Са ,а — тонкие нити актина, м — толстые нити миозина

с утолщениями (головками) на концах. Зет-мембранами ограничены

саркомеры миофибрилл. Толстые стрелки — распространение потенциала

действия при возбуждении волокна и перемещение ионов Са из цистерн

и продольных трубочек в миофибриллы, где они содействуют образованию

мостиков между нитями актином и миозином и скольжение этих нитей

(сокращение волокна) за счет гребковых движений головок миозина.

имеющихся мостиков и образованию в присутствии Са новых мос­тиков на следующем участке актиновой нити. В результате повторе­ния подобных процессов многократного образования и распада мос­тиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала дей­ствия в поперечных трубочках, а максимальное напряжение мышеч­ного волокна — через 20 мс.

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромехани­ческой связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.

Расслабление мышечного волокна связано с работой особого механизма — «кальциевого насоса», который обеспечивает откачку ионов Са из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

Дата добавления: 2016-05-25 ; просмотров: 1015 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Сокращение саркомера мышечного волокна мышцы

• Миозин II представляет собой мотор, обеспечивающий сокращение мышц

• Актин и миозин II являются основными компонентами саркомера, основной единицей сокращения поперечнополосатых мышц

Мышцы представляют собой ткань, способную к сокращению, которая обеспечивает движение тела и подвижность органов. В соответствии с внешним видом сократительных волокон, мышцы можно подразделить на две основных группы: поперечнополосатые и гладкие. Волокна поперечнополосатых мышц называются так потому, что при большом увеличении можно видеть их характерную исчерченность. К этой группе относятся скелетные и сердечная мышцы.

Скелетные мышцы обеспечивают подвижность скелета, а сердечная сокращение сердца. Волокна гладких мышц не исчерченные и имеют веретенообразную форму. Эти мышцы образуют стенки органов, например мочевого пузыря, кровеносных сосудов и желудочно-кишечного тракта.

Белковый мотор, который обеспечивает сокращение мышц, относится к семейству миозина II. Этот миозин принадлежит к числу наиболее распространенных белков позвоночных, он легко выделяется и поэтому является одним из хорошо изученных белков.
На рисунке ниже представлено строение молекулы миозина II, состоящей из шести полипептидных цепей: двух тяжелых и двух наборов, каждый из которых состоит из двух легких цепей.

Миозин II представляет собой гексамерный комплекс,
состоящий из двух тяжелых цепей и двух пар различных легких цепей.
Эти комплексы собираются в биполярные толстые филаменты.

Дистальный участок хвоста мышечного миозина II связан с другими молекулами миозина II, образуя волокна, состоящие примерно из 300 молекул миозина. Эти волокна биполярны, и моторные домены всех миозинов направлены от центральной зоны. Эти волокна называются толстые биполярные филаменты. В настоящем разделе мы обсудим организацию и роль миозина II в сокращении поперечнополосатых мышц. Эти вопросы хорошо изучены.

Поперечнополосатые мышцы состоят из пучков мышечных волокон. Последние представляют собой крупные многоядерные клетки, длина которых варьирует от нескольких миллиметров до нескольких сантиметров, а диаметр составляет 20-100 мкм. Рисунок ниже показывает, что каждое мышечное волокно состоит более чем из 1000 миофибрилл, которые представляют собой палочковидные органеллы, способные к сокращению. Миофибриллы состоят из повторяющихся единиц, которые называются саркомеры. Саркомеры расположены друг за другом и обусловливают характерную исчерченность мышц.

Саркомеры представляют собой основные сокращающиеся единицы поперечнополосатых мышц; при сокращении и расслаблении мышцы их длина изменяется. Как показано на рисунке ниже, саркомеры содержат толстые филаменты, состоящие, главным образом, из биполярных филаментов миозина II, и тонких филаментов, которые содержат актиновые нити и регуляторные белки. Оперенные концы актиновых филаментов с одной стороны прикреплены к структуре саркомера, которая носит название Z-диск. При этом все актиновые филаменты с одной стороны Z-диска имеют одинаковую полярность.

Актиновые филаменты прикрепляются к Z-диску и копируются за счет связывания с копирующим белком (CapZ), что предотвращает деполимеризацию актиновых филаментов. Заостренные концы актиновых филаментов ориентированы к центру саркомера и копированы тропомодулином. С актиновыми филаментами также взаимодействует белок небулин; он может регулировать сборку волокон и длину тонких филаментов.

Толстые филаменты находятся в центре, на М-линии, между Z-дисками. М-линия представляет собой структуру, состоящую из гибко связанных биполярных толстых филаментов; эти связи скрепляют толстые филаменты, гексагонально расположенные внутри. Наряду с М-линией, белок филаментов, который называется титаном, образует эластичные связи между Z-дисками и миозиновыми волокнами. Титин обеспечивает центровку толстых филаментов в саркомере и действует как пружина, которая не допускает растягиваться саркомеру.

Тонкие и толстые филаменты переплетаются, образуя трехмерную решетчатую структуру. Поскольку саркомер биполярен, в обеих половинах миозиновые моторы по отношению к актину ориентированы одинаково. При сокращении моторные домены миозина толстых филаментов взаимодействуют с актином тонких филаментов. При сокращении саркомер укорачивается за счет скольжения тонких и толстых филаментов относительно друг друга, что сближает соседние Z-диски к центру саркомера. По мере продвижения головок миозина к зазубренным концам актиновых филаментов, длина толстых и тонких филаментов остается постянной.

Ширина саркомера в расслабленной мышце позвоночных составляет около 3 мкм, а при сокращении она становится около 2,4 мкм.

В мышечном волокне укорачиваются группы, состоящие из тысяч саркомеров, что приводит к укорачиванию всей мышцы. Общая длина укороченного мышечного волокна определяется двумя факторами: длиной, на которую укорачивается каждый саркомер, и количеством саркомеров в группе. Процентная величина, на которую происходит укорачивание мышечных волокон, одна и та же, независимо от их длины.

Величина усилия, генерируемого саркомером, пропорционально числу акто-миозиновых взаимодействий в половине саркомера, а величина усилия, которое развивает мышчное волокно, пропорционально числу параллельно расположенных саркомеров. Таким образом, штангисты увеличивают свою силу за счет увеличения площади поперечного сечения мышц, а не за счет их длины.

Как показано на рисунке ниже, сокращение поперечнополосатых мышц регулируется с участием тропонин-тропомиозинового комплекса, который связан с актином в тонких филаментах. Молекулы тропомиозина представляют собой суперспирализованные полипептиды длиной 40 нм. Она располагаются друг за другом вдоль актиновых спиралей. Тропонин представляете собой комплекс из трех различных белков: тропонина С, тропонина I и тропонина Т. Один комплекс связывается с тропомиозином так, что они располагаются вдоль тонких филаментов через 40 нм интервалы.

При низких концентрациях ионов кальция тропомиозин находится в таком состоянии, что пространственно блокирует сайт связывания миозина на актине, так что мышца расслабляется и гидролиз АТФ под действием миозина происходит очень медленно. За счет взаимодействия актина с миозином релаксированные саркомеры способны к пассивному растяжению, оказывая небольшое сопротивление.

Нервные импульсы вызывают выход кальция в цитозоль из саркоплазматического ретикулума. Последний представляет собой органеллу, которая депонирует кальций в мышце. Повышение уровня кальция в цитозоле приводит к его связыванию с тропонином-С и к конформационным изменениям в молекуле белка. В результате этих изменений тропомиозин отходит от миозин-связывающего сайта в актине, и миозин получает возможность взаимодействовать с актином и генернировать усилия за счет механохимического цикла.

Скелетные мышцы состоят из мышечных волокон, содержащих миофибриллы и представляющих собой удлиненные клетки.
Миофибриллы способны к сокращению и содержат повторяющиеся структурные единицы, называемые саркомерами.
На конце каждого саркомера находится Z-диск, к которому через CapZ (кэпирующий белок) присоединяются актиновые филаменты.
Толстые миозиновые филаменты соединяются с Z-диском через белок титин и вплетаются между актиновыми филментами.
Небулин проходит от Z-диска к тропомодулину. Однако как он связывает актин, пока неизвестно.
Сокращение мышцы происходит, когда толстые миозиновые филаменты присоединяются к актиновым и перемещают их таким образом,
что Z-диски сдвигаются относительно друг друга. При этом длина саркомера уменьшается.
Чем длиннее миофибрилла (т. е. чем больше саркомеров), тем более она укорачивается при сокращении.
Однако в процентном отношении величина укорачивания не зависит от числа саркомеров.
Сокращение поперечнополосатых мышц регулируется уровнем Са2+ в цитозоле,
который определяет положение комплекса тропонин/тропомиозин относительно миозина и актина.

Физиология возбуждения. Мышечное сокращение. Особенности строения мышц. Строение мышечного волокна. Строение саркомера. Моторная единица.

Мышцы в организме человека выполняют функции:

  1. Перемещают тело и его части в пространстве
  2. Поддерживает тонус сосудов и полостных органов
  3. Обеспечивают работу сердца

Существуют 3 типа мыщц: Поперечно-полосатые скелетные, Поп-полосатые сердечные, Гладкие.

Физиологические свойства мышц:

  • Возбудимость — способность мышц отвечать на раздражение
  • Сократимость — способность изменять напряжение при возбуждении
  • Проводимость — скорость проведения возбуждений вдоль мышечного волокна
  • Растяжимость — способность мышцы изменять свою длину под действием растягивающей её силы
  • Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей и деформирующей силы
  • Белые — быстрые мышечные волокна. Имеют толстые миофибрилы, обладают большой силой, имеют большой запас гликогена.Утомляемые, скоростно-силовые.
  • Красные — медленные. Имеют широко развлетвленную капилярную сеть.Повышенное содержание меоглобина и митохондрий. Мышцы выносливости, малоутомляемые.
  • Смешанная мышца.

Мышцы состоят из мышечных волокон — волокна из миофибрил — миофибрилла из нитей сократительных белков актина и миозина. Миофибрилы разделены на участки — саркомеры

Саркомер — структурный функциональный элемент сократительных нитей миоцитов

Актиновый(тонкий) филамент (Две спирали, полуяблоко)

Моторная единица мышцы Группа мышечных волокон и иннервирующий их мотонейрон определяются как моторная единица -минимальная функциональная единица мышечной системы. Число мышечных волокон, составляющих моторную единицу варьирует от мышцы к мышце. Там, где требуется тонкий контроль движений, например, в пальцах или мышцах глаз, моторные единицы малы, как правило не более 5 — 20 волокон; там, где тонкий контроль не требуется — в мышцах спины и бедра, моторные единицы намного крупнее и состоят из более, чем тысячи волокон.

Похожих постов не найдено

Комментариев нет, будьте первым кто его оставит