Механизм сокращения гладких мышц физиология, механизм сокращения гладких мышц физиология

Содержание
  1. Механизм сокращения гладких мышц физиология
  2. Мышечное сокращение
  3. Виды мышечного сокращения
  4. Механизм мышечного сокращения
  5. Суммация сокращений и тетанус
  6. Физиологические свойства скелетных и гладких мышц. Современное представление о механизме мышечного сокращения и расслабления
  7. Механизм мышечных сокращений. Функции и свойства скелетных мышц
  8. Мышцы
  9. Физиологические свойства
  10. Виды сокращений
  11. Структура и иннервация скелетных мышц
  12. Иннервация
  13. Структура миофибрилл
  14. Механизм мышечного сокращения волокна
  15. Этапы сокращения
  16. Ионы кальция
  17. 3 процесса с АТФ
  18. Потребление АТФ
  19. Механизм АТФ
  20. Ресинтез АТФ
  21. Физиология процесса
  22. Свойства гладких мышц, механизм сокращения гладких мышц

Механизм сокращения гладких мышц физиология

Гладкие мышцы содержат актиновые и миозиновые нити, имеющие химические характеристики, подобные актиновым и миозиновым нитям скелетных мышц. Но в гладких мышцах нет тропонинового комплекса, необходимого для запуска сокращения скелетной мышцы, следовательно, механизм инициации сокращения в них другой. Этот механизм подробно обсуждается далее в нашей статье.

Химические исследования показали, что актиновые и миозиновые нити, извлеченные из гладких мышц, взаимодействуют друг с другом во многом так же, как и в скелетной мышце. Более того, процесс сокращения активируется ионами кальция, а энергия для сокращения обеспечивается разрушением АТФ до АДФ.

Существуют, однако, значительные различия в морфологической организации гладких и скелетных мышц, а также в сопряжении возбуждения и сокращения, механизме запуска ионами кальция сократительного процесса, длительности сокращения и количестве энергии, необходимой для сокращения.

Морфологическая основа сокращения гладких мышц

Гладкие мышцы не имеют такой упорядоченной организации актиновых и миозиновых нитей, которая обнаруживается в скелетных мышцах, придавая им «полосатость». С помощью техники электронной микрофотографии выявляется гистологическая организация. Видно большое число актиновых нитей, прикрепленных к так называемым плотным тельцам. Некоторые из этих телец прикрепляются к клеточной мембране, другие распределяются внутри клетки. Некоторые из мембранных плотных телец соседних клеток связываются вместе мостиками из внутриклеточных белков. Через эти мостики в основном передается сила сокращения от одной клетки к другой.

В мышечном волокне среди актиновых нитей разбросаны миозиновые нити. Их диаметр более чем в 2 раза превышает диаметр актиновых нитей. На электронных микрофотографиях актиновых нитей обычно обнаруживают в 5-10 раз больше, чем миозиновых.

На рисунке представлена предполагаемая структура отдельной сократительной единицы внутри гладкомышечной клетки, где видно большое число актиновых нитей, исходящих от двух плотных телец; концы этих нитей перекрывают миозиновую нить, расположенную посередине между плотными тельцами. Эта сократительная единица похожа на сократительную единицу скелетной мышцы, но без специфической регулярности ее структуры. В сущности, плотные тельца гладкой мышцы играют ту же роль, что и Z-диски в скелетной мышце.

Существует и другое различие. Большинство миозиновых нитей имеют поперечные мостики с так называемой боковой полярностью. Мостики организованы следующим образом: на одной стороне они шарнирно фиксируются в одном направлении, а на другой — в противоположном направлении. Это позволяет миозину тянуть актиновую нить с одной стороны в одном направлении, одновременно продвигая с другой стороны другую актиновую нить в противоположном направлении. Такая организация позволяет гладкомышечным клеткам сокращаться с укорочением до 80% их длины вместо укорочения менее чем на 30%, характерного для скелетной мышцы.

Большинство скелетных мышц сокращаются и расслабляются быстро, но сокращения гладких мышц в основном являются длительными тоническими сокращениями, которые иногда продолжаются в течение нескольких часов или даже дней. Следовательно, можно ожидать, что морфологические и химические особенности гладких мышц должны отличаться от соответствующих характеристик скелетных мышц. Далее обсуждаются некоторые из этих отличий.

Медленная циклическая активность миозиновых поперечных мостиков. В гладкой мышце по сравнению соскелетной гораздо меньше скорость циклической активности миозиновых поперечных мостиков, т.е. скорость их прикрепления к актину, отсоединение от актина и повторное прикрепление для осуществления следующего цикла. Фактически частота циклов составляет лишь от 1/10 до 1/300 этого показателя в скелетной мышце. Однако, как считают, в гладкой мышце значительно больше относительное количество времени, в течение которого поперечные мостики остаются прикрепленными к актиновым нитям, что является главным фактором, определяющим силу сокращения. Возможной причиной медленного циклирования является гораздо меньшая по сравнению со скелетной мышцей АТФ-азная активность головок поперечных мостиков, в связи с чем скорость разрушения АТФ — источника энергии для движения головок поперечных мостиков — значительно снижена с соответствующим замедлением скорости их циклов.

Мышечное сокращение

  • Физиология
  • История физиологии

Виды мышечного сокращения

Перемещение тела в пространстве, поддержание определенной позы, работа сердца, сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются посредством мышц двух основных типов: поперечно-полосатых (скелетная, сердечная) и гладких, которые различаются клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы

Скелетная мускулатура является активной частью опорно-двигательного аппарата. В результате сократительной деятельности поперечно-полосатых мышц осуществляются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга;
  • поддержание позы.

Кроме того, один из результатов мышечного сокращения — выработка тепла.

У человека, как и у всех позвоночных, волокна скелетных мышц обладают четырьмя важнейшими свойствами:

  • возбудимость — способность отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала;
  • проводимость — способность к проведению потенциала действия вдоль всего волокна;
  • сократимость — способность сокращаться или изменять напряжение при возбуждении;
  • эластичность — способность развивать напряжение при растягивании.

В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте, применяют электрическую стимуляцию.

Непосредственное раздражение самой мышцы называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы (возбуждение нейромоторных единиц), — непрямым раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц.

Типы сокращения

Изотонический режим — сокращение, при котором мышца укорачивается без формирования напряжения. Такое сокращение возможно при пересечении или разрыве сухожилия или в эксперименте на изолированной (удаленной из организма) мышце.

Изометрический режим — сокращение, при котором напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим — сокращение, при котором длина мышцы изменяется по мере увеличения ее напряжения. Такой режим сокращений наблюдается при осуществлении трудовой деятельности человека. Если напряжение мышцы возрастает при ее укорочении, то такое сокращение называют концентрическим, а в случае увеличении напряжения мышцы при ее удлинении (например, при медленном опускании груза) — эксцентрическим сокращением.

Виды мышечных сокращений

Выделяют два вида мышечных сокращений: одиночное и тетаническое.

При раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют следующие три фазы:

  • фаза латентного периода — начинается от начала действия раздражителя и до начала укорочения;
  • фаза сокращения (фаза укорочения) — от начала сокращения до максимального значения;
  • фаза расслабления — от максимального сокращения до начальной длины.

Одиночное мышечное сокращение наблюдается при поступлении к мышце короткой серии нервных импульсов моторных нейронов. Его можно вызвать воздействием на мышцу очень коротким (около 1 мс) электрическим стимулом. Сокращение мышцы начинается через временной промежуток до 10 мс от начала воздействия раздражителя, который и называют латентным периодом (рис. 1). Затем развиваются укорочение (длительность около 30-50 мс) и расслабление (50-60 мс). На весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с.

Длительность одиночного сокращения у разных мышц может сильно варьировать и зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим кратковременное одиночное сокращение, относятся наружные мышцы глазного яблока, век, среднего уха и др.

При сопоставлении динамики генерации потенциала действия на мембране мышечного волокна и его одиночного сокращения видно, что потенциал действия всегда возникает раньше и лишь затем начинает развиваться укорочение, которое продолжается и после окончания реполяризации мембраны. Вспомним, что длительность фазы деполяризации потенциала действия мышечного волокна составляет 3-5 мс. В течение этого промежутка времени мембрана волокна находится в состоянии абсолютной рефрактерности, за которой следует восстановление се возбудимости. Поскольку длительность укорочения составляет около 50 мс, то очевидно, что еще во время укорочения мембрана мышечного волокна должна восстанавливать возбудимость и будет способна отвечать на новое воздействие сокращением на фоне еще незавершенного. Следовательно, на фоне развивающегося сокращения в мышечных волокнах на их мембране можно вызвать новые циклы возбуждения и следующие за ними суммирующиеся сокращения. Такое суммирующееся сокращение получило название тетанического (тетанус). Его можно наблюдать в одиночном волокне и целой мышце. Однако механизм тетанического сокращения в естественных условиях в целой мышце имеет особенности.

Рис. 1. Временные соотношения одиночных циклов возбуждения и сокращения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокращения: 1 — латентный период; 2 — укорочение; 3 — расслабление; б — соотношение потенциала действия, возбудимости и сокращения

Тетанусом называют сокращение мышцы, возникающее в результате суммирования сокращений ее моторных единиц, вызванных поступлением к ним множества нервных импульсов от моторных нейронов, иннервирующих данную мышцу. Суммирование усилий, развиваемых при сокращении волокон множества двигательных единиц, способствует увеличению силы тетанического сокращения мышцы и влияет на длительность сокращения.

Различают зубчатый и гладкий тетанус. Для наблюдения в эксперименте зубчатого тетануса мышцы ее стимулируют импульсами электрического тока с такой частотой, чтобы каждый последующий стимул наносился после фазы укорочения, но еще до окончания расслабления. Гладкое тетаническое сокращение развивается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения мышцы составляет 50 мс, фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого — с частотой не менее 20 Гц.

Для демонстрации различных видов тетануса обычно используют графическую регистрацию на кимографе сокращений изолированной икроножной мышцы лягушки. Пример такой кимограммы представлен на рис. 2.

Если сравнивать амплитуды и усилия, развиваемые при различных режимах сокращения мышцы, то они при одиночном сокращении минимальны, увеличиваются при зубчатом тетанусе и становятся максимальными при гладком тетаническом сокращении. Одной из причин такого возрастания амплитуды и силы сокращения является то, что увеличение частоты генерации ПД на мембране мышечных волокон сопровождается увеличением выхода и накоплением в саркоплазме мышечных волокон ионов Са 2+ , способствующего большей эффективности взаимодействия между сократительными белками.

Рис. 2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до определенного предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

В естественных условиях частота и режим посылки моторными нейронами нервных импульсов к мышце обеспечивают асинхронное вовлечение в процесс сокращения большего или меньшего (в зависимости от числа активных мотонейронов) количества двигательных единиц мышцы и суммацию их сокращений. Сокращение целостной мышцы в организме но своему характеру близко к гладкотеганическому.

Для характеристики функциональной активности мышц оценивают показатели их тонуса и сокращения. Тонусом мышцы называют состояние длительного непрерывного напряжения, вызванное попеременным асинхронным сокращением ее моторных единиц. При этом видимое укорочение мышцы может отсутствовать из-за того, что в процесс сокращения вовлекаются не все, а лишь те двигательные единицы, свойства которых наилучшим образом приспособлены к поддержанию тонуса мышцы и силы их асинхронного сокращения недостаточно для укорочения мышцы. Сокращения таких единиц при переходе от расслабления к напряжению или при изменении степени напряжения называют тоническими. Кратковременные сокращения, сопровождаемые изменением силы и длины мышцы, называют физическими.

Механизм мышечного сокращения

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат-миофибриллы (рис. 3). Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматический ретикулум и система поперечных трубочек — Т-система.

Рис. 3. Строение мышечного волокна

Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками (рис. 4). Саркомеры в миофибрилле расположены последовательно, поэтому сокращения capкомеров вызывают сокращение миофибриллы и общее укорочение мышечного волокна.

Рис. 4. Схема строения саркомера

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченносгь, которая обусловлена особой организацией сократительных белков протофибрилл — актина и миозина. Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина.

Тропонин и тропомиозин играют (см. рис. 3) важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска H. В состоянии покоя в ней нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре H-полоски обнаружена М-линия — структура, которая удерживает нити миозина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование современной техники позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили X. и А. Хаксли предложить теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.

Рис. 5. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

электрохимическое преобразование:

  • генерация ПД;
  • распространение ПД по T-системе;
  • электрическая стимуляция зоны контакта T-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са 2+ ;

хемомеханическое преобразование:

  • взаимодействие ионов Са 2+ с тропонином, изменение конфигурации тропомиозина, освобождение активных центров на актиновых филаментах;
  • взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги;
  • скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходите помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Г-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ ‘ с 10 -7 до 10 -5 . Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са 2+ т.е. электрохимическое преобразование (рис. 6).

При повышении внутриклеточной концентрации ионов Са 2+ происходит их связывание с тропонином, который изменяет конфигурацию тропомиозина. Последний смешается в желобок межу нитями актина; при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением формации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином и смещение тропомиозина.

На пятом этапе электромеханического сопряжения происходит присоединение головки поперечного мостика миозина к мостикуактина — к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т.е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Рис. 6. Электромеханические процессы в мышце

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 7).

Первоначально полагали, что ионы Са 2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Рис. 7. Иллюстрация теории скользящих нитей:

А. а — мышца в покое: А. 6 — мышца при сокращении: Б. а. б — последовательное взаимодействие активных центров миозиновой головки с центрами на активной нити

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и акгинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 10 -6 М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ . Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ. а энергообеспечение работы кальциевого насоса — также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Функциональное значение АТФ при сокращении скелетной мускулатуры

  • Гидролиз АТФ под действием миозина, в результате поперечные мостики получают энергию для развития тянущего усилия
  • Связывание АТФ с миозином, ведущее к отсоединению поперечных мостиков, прикрепленных в актину, что создает возможность повторения цикла их активности
  • Гидролиз АТФ (под действием Са 2+ -АТФазы) для активного транспорта ионов Са 2+ в латеральные цистерны саркоплазматического ретикулума, снижающий уровень цитоплазматического кальция до исходного уровня

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающие сокращения будут иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 8). Оно наблюдается как при прямом, так и непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.

Рис. 8. Суммация мышечных сокращений 8 ответ на два стимула. Отметка времени 20 мс

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы

Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением, или тетанусом.

Амплитуда его может быть в несколько раз больше величины максимального единичного сокращения. При относительно малой частоте раздражений наблюдается зубчатый тетанус, при большой частоте — гладкий тетанус (рис. 9). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 10) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Утомление мышцы

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Рис. 9. Тетанус изолированного мышечного волокна (по Ф.Н. Серкову):

а — зубчатый тетанус при частоте раздражения 18 Гц; 6 — гладкий тетанус при частоте раздражения 35 Гц; М — миограмма; Р — отметка раздражения; В — отметка времени 1 с

Рис. 10. Одновременная запись сокращения (а) и электрической активности (6) скелетной мышцы кошки при тетаническом раздражении нерва

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами:

  • во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы;
  • постепенное истощение в мышце энергетических запасов. При длительной работе изолированной мышцы резко уменьшаются запасы гликогена, вследствие чего нарушается процесс ресинтеза АТФ и креатинфосфата, необходимый для осуществления сокращения.

И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.

Физиологические свойства скелетных и гладких мышц. Современное представление о механизме мышечного сокращения и расслабления

1)Поперечнополосатая скелетная (мышцы опорно-двигательного аппарата, жевательные, дыхательные, глазодвигательные и др.)

3)Гладкая (стенки внутренних органов, сосудов и т.д.)

Все мышцы обладают следующими основными свойствами:

· возбудимостью

· проводимостью

· лабильностью

· сократимостью — способностью изменять свою длину и напряжение при возбуждении;

Физические свойства мышц:

· Растяжимость — способность мышцы изменять длину под действием растягивающей ее силы.

· Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей или деформирующей силы.

· Пластичность — способность сохранять приданную растяжением длину без изменения напряжения.

Функции скелетной мышцы:

1. Обеспечение тонуса

2. Перемещение тела и

отдельных его частей

4. Депо гликогена

5. Механическая защита

Теория скользящих нитей, разработанная А.Хаксли и Х.Хаксли (1953) объясняет, каким образом происходит укорочение мышцы. Основное положение теории скользящих нитей — во время сокращения мышцы актиновые и миозиновые нити не укорачиваются, а скользят относительно друг друга. Мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах. Тонкие актиновые протофибриллы скользят вдоль толстых миозиновых, двигаясь между ними к середине саркомера. В состоянии покоя миозиновый мостик не может соединиться с нитью актина, так как активные центры актиновой нити блокированы тропонин-тропомиозиовым комплексом. Кроме того, ТТК блокирует АТФ-азную активность миозина. Соединение миозиновой головки с активным участком актина приводит к тому, что головка приобретает АТФ-азную активность. Происходит гидролиз АТФ (миозин + АТФ ® АДФ + миозин-фосфат), сопровождаемый конформационным изменением этой части миозиновой молекулы, что приводит к изменению ее пространственного положения («сгибанию» головки на 45°) и перемещению нити актина на один «шаг» («гребок») к середине саркомера

После этого образующиеся АДФ и фосфат отходят, а на их место встает новая молекула АТФ, что приводит к разрыву связи миозина с активным центром актина. В результате шейка головки миозина выпрямляется, занимая исходное положение. В каждом цикле прикрепления-отделения поперечного мостика расходуется одна молекула АТФ на каждый мостик.

Поступление новой порции Са 2+ стимулирует взаимодействие миозиновой головки уже с другим активным центром актиновой нити, оказавшимся в данный момент напротив ее.Так как головки миозиновых нитей расположены биполярно, то их совместные «гребки» обеспечивают скольжение актиновых нитей по направлению к середине саркомера, что приводит к его укорочению

При однократном движении поперечных мостиков вдоль актиновых нитей саркомер укорачивается примерно на 1% исходной длины (2´10 нм).

Многократное прикрепление и отсоединение головок миозиновых нитей всех саркомеров может втянуть нити актина вдоль миозиновых и совершить требуемое укорочение мышечного волокна. Например, для укорочения мышцы на 20% длины поперечные мостики должны совершить свои гребковые движения 20 раз. За счет ритмичных отделений и повторных прикреплений миозиновых головок актиновые нити подтягиваются к середине саркомера.

Для отсоединения головок миозина от актиновых нитей необходимо присутствие АТФ, которая связывается с головкой миозина и способствует уменьшению сродства поперечного мостика к активному участку.

В отсутствии АТФ поперечные мостики не могут отделиться от тонкой нити, что приводит к формированию неподвижных комплексов. Эти комплексы обуславливают трупное окоченение, наступающее после смерти в результате истощения запасов АТФ.

Возврат ионов кальция в цистерны саркоплазматического ретикулума идет против концентрационного градиента, поэтому этот процесс требует затрат энергии. Ее источником служит АТФ (обеспечивает работу кальциевого насоса).

Расслабление мышцы — процесс активно-пассивный, требующий затрат энергии АТФ. Ионы кальция при помощи кальциевого насоса возвращаются в цистерны саркоплазматического ретикулума. При снижении концентрации кальция до подпорогового уровня молекулы ТТК принимают форму, характерную для состояния покоя. При этом ТТК блокирует активные участки актиновых нитей. Тонкие нити под влиянием эластичности сократившихся мышечных волокон скользят в обратном направлении. Все это приводит к расслаблению мышцы.

Энергозависимыми при мышечном сокращении являются три процесса:

· работа Nа + -К + насоса, обеспечивающего поддержание постоянства градиента концентрации этих ионов по обе стороны мембраны;

· работа Са + насоса, активируемого при расслаблении волокна;

· конформационное изменение миозиновой молекулы, обеспечивающее скольжение нитей.

Виды и режимы сокращения скелетных мышц. Работа и сила мышц. Одиночное мышечное сокращение, его фазы, тетанус, его виды. Оптимум и пессимум частоты и силы раздражения (Введенский). Механизм тетануса в целостном организме

В зависимости от условий, в которых происходит мышечное сокращение, различают три его основных вида (типа):

· изотоническое — сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается постоянным;

· изометрическое — такое сокращение, при котором мышца развивает напряжение при неизменной длине мышечных волокон (например, если оба конца мышцы закрепить неподвижно);

· смешанное (ауксотоническое) — сокращение мышцы, сопровождаемое изменением и ее длины, и напряжения.

режимы мышечных сокращений:

· одиночное сокращение — механический ответ мышцы при однократном раздражении (рис. 22А);

· тетаническое сокращение — механический ответ мышцы при действии на нее серии импульсов определенной частоты, если последующее раздражение (после предыдущего) наносится до окончания периода одиночного мышечного сокращения (рис. 22Б, В). Тетаническое сокращение — длительное слитное сокращение скелетных мышц. В его основе лежит явление суммации одиночных мышечных сокращений.

При прямом или непрямом раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы

· латентный период — начинается от момента нанесения раздражителя и заканчивается с началом укорочения мышцы;

· фаза укорочения — наблюдается уменьшение длины мышцы;

· фаза расслабления — мышца расслабляется.

Фаза расслабления продолжается немного дольше, чем фаза укорочения. Длительность этих фаз зависит от морфофункциональных свойств мышечного волокна: у быстро сокращающихся волокон глазных мышц длительность фазы укорочения составляет 7-10 мс, а у медленных волокон камбаловидной мышцы — 50-100 мс. Для портняжной мышцы лягушки длительность фаз составляет: 0,01 с. — латентный период, 0,05 с. — фаза укорочения и 0,06 с. — фаза расслабления.

виды тетануса, механизм возникновения различных видов тетануса:

Если последующее раздражение наносится, когда мышца уже начала расслабляться после предыдущего укорочения (то есть приходится на фазу расслабления предыдущего цикла), — наблюдается зубчатый тетанус (неполный). На миографической кривой вершина второго сокращения будет отделена от вершины первого небольшим западением кривой (рис. 24Б).

Если последующее раздражение приходится на фазу укорочения предыдущего цикла, наблюдается гладкий тетанус (полный). На миографической кривой второе сокращение полностью сливается с первым, образуя единую вершину (рис. 24В).

В порядке возрастания амплитуды сокращения можно расставить режимы сокращения так: одиночное мышечное сокращение, зубчатый тетанус, гладкий тетанус, Причем амплитуда зубчатого и гладкого тетануса зависит от частоты раздражения. Во время одиночного сокращения в поперечных мостиках между нитями актина и миозина возникает упругое напряжение, однако одиночного стимула недостаточно для прикрепления всех мостиков. Если стимулы поступают с высокой частотой, обеспечивая тетаническое сокращение, то уровень Са 2+ в интервалах между стимулами остается высоким, потому что кальциевый насос не успевает вернуть все ионы в СПР. Высокий уровень Са 2+ обеспечивает образование большего количества поперечных мостиков, что в свою очередь повышает амплитуду укорочения мышцы. При этом чем больше частота стимуляции, тем выше амплитуда укорочения, но до определенного предела.

В латентный период мышечного сокращения происходят последовательно следующие процессы:

· распространение потенциала действия по сарколемме и системе поперечных трубочек вглубь мышечного волокна;

· возбуждение мембран цистерн саркоплазматического ретикулума и открытие кальциевых каналов;

· выход из концевых цистерн ионов кальция;

· диффузия ионов кальция в межфибриллярное пространство;

· взаимодействие ионов кальция с ТТК, расположенным на актиновой нити;

· освобождение активных участков актиновых нитей для связывания с головкой миозина.

Наименьшая частота стимуляции мышцы, при которой амплитуда гладкого тетануса максимальная, называется оптимум частоты раздражения. При дальнейшем повышении частоты стимуляции происходит расслабление мышцы, такая частота получила название пессимальной. Уменьшение частоты стимуляции тотчас же приводит к восстановлению исходного высокого уровня тетанического сокращения

Оптимум силы — сила раздражителя, при действии которого возбуждением охвачены все мышечные волокна и амплитуда тетануса максимальна.

Пессимум силы — сила раздражителя, превышающая оптимальную, которая вызывает уменьшение амплитуды тетануса вплоть до полного расслабления мышцы.

В целостном организме мышцы сокращаются в режимах:

— одиночного сокращения и зубчатого тетануса, характерных для медленных ДЕ;

— “ложного” тетануса — то есть в виде ряда последовательных одиночных сокращений, свойственных быстрым ДЕ.

Однако форма сокращения целостной мышцы напоминает гладкий тетанус. Причина этого — асинхронность разрядов мотонейронов и сократительной реакции отдельных мышечных волокон (мышечные волокна, относящиеся к одной двигательной единице, сокращаются синхронно). Благодаря этому мышца плавно сокращается и плавно расслабляется, а также может длительно находиться в сокращенном состоянии за счет чередования сокращений множества мышечных волокон.

Дата добавления: 2015-11-05 ; просмотров: 1279 | Нарушение авторских прав

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Ионы кальция

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

  • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
  • этих веществ по разные стороны мембраны;
  • скольжения нитей, укорачивающих миофибриллы;
  • работы насоса кальция, действующего для расслабления.

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Свойства гладких мышц, механизм сокращения гладких мышц

Гладкие мышцы — сократительная ткань, состоящая из отдельных клеток и не имеющая поперечной исчерченности (Рис. 1.). У гладкомышечной клетки веретенообразная форма, длина которой примерно 50 — 400 мкм и толщина 2-10 мкм. Отдельные нити соединены особыми межклеточными контактами — десмосомами и образуют сеть с вплетенными в нее коллагеновыми волокнами. Отсутствие поперечной исчерченности, характерной для сердечной и скелетной мускулатуры, объясняется нерегулярным распределением миозиновых и актиновых нитей. Укорачиваются гладкие мышцы также за счет скольжения миофиламентов относительно друг друга, но скорость скольжения и расщепление АТФ здесь в 100 — 1000 раз ниже, чем у поперечнополосатых мышц. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам.

Гладкие мышцы входят в состав внутренних органов, сосудов и кожи. Они отличаются наличием интересных функциональных особенностей: способностью осуществлять относительно медленные движения и длительные тонические сокращения. Медленные движения (сокращения), часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишечника, протоков пищеварительных желез, мочевого пузыря, желчного пузыря, обеспечивают перемещение содержимого этих органов. Примером являются маятникообразные и перистальтические движения кишечника. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тонические сокращения препятствуют выходу содержимого. Это обеспечивает нахождение желчи в желчном пузыре и мочи в мочевом пузыре, формирование каловых масс в толстом кишечнике.

Показано строение (слева) поперечнополосатых и гладких мышц у позвоночных и зависимость между электрической (сплошные линии) и механической (пунктирные линии) активностью (справа). А. Поперечнополосатые мышцы являются многоядерными клетками цилиндрической формы. В них генерируются быстрые потенциалы действия и быстрые сокращения. Б. Волокна гладкой мышцы имеют по одному ядру, небольшой размер и веретенообразную форму. Они соединены между собой боковыми поверхностями через щелевые контакты и образуют электрически объединенные группы клеток.

Иннервация диффузная, активация волокон осуществляется за счет высвобождения медиатора из расширений, расположенных вдоль вегетативного нерва. Несмотря на то, что потенциалы действия клеток гладких мышц быстрые, результирующие сокращения развиваются медленно и протекают долго.

В состоянии постоянного тонического сокращения находятся тонкие гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину кровяного давления и кровоснабжение органов.

Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная — отростками клеток симпатических ганглиев. Тонус и двигательная функция гладких мышц регулируется также и гуморальными влияниями.

Все гладкие мышц можно разделить на две группы:

1. Гладкие мышцы с миогенной активностью. Во многих гладких мышцах кишечника (например, слепой кишки) одиночное сокращение, вызванное потенциалом действия, продолжается несколько секунд. Следовательно, сокращения, следующие с интервалом менее 2с, накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный тонус) (рис.2). Природа такого тетануса миогенная; в отличие от скелетной мышцы гладкие мышцы кишечника, мочеточника, желудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ганглиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импульсов, а имеют миогенное происхождение.

Миогенное возбуждение возникает в клетках-ритмоводителях (пейсмекерах), которые идентичны другим мышечным клеткам по структуре, но отличаются электрофизиологическими свойствами. Пейсмекерные потенциалы деполяризуют мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до +20 мВ. После реполяризации следует новый пейсмекерный потенциал, обеспечивающий генерацию следующего потенциала действия. При воздействии на препарат толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и частота возникновения потенциалов действия возрастает. Вызванные ими сокращения сливаются до почти гладкого тетануса. Чем выше частота следования потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возникающее в результате суммации одиночных сокращений. И, напротив, нанесение на тот же препарат норадреналина гиперполяр образует мембрану и в результате снижает частоту возникновения потенциалов действия и величину тетануса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.

Рис.2. Спонтанный потенциал действия (верхняя запись) вызывает в изолированной мышце толстой кишки одиночное сокращение.

Обработка ацетилхолином (стрелка) повышает частоту возникновения потенциалов действия так, что одиночные сокращения сливаются в тетанус. Нижняя запись — временной ход мышечного напряжения.

2. Гладкие мышцы без миогенной активности. В отличие от мышц кишечника у гладких мышц артерий, семенных протоков, радужки, а также у ресничных мышц спонтанная активность обычно слабая или ее вообще нет. Их сокращение возникает под действием импульсов, поступающих к этим мышцам по вегетативным нервам. Такие особенности обусловлены структурной организацией их ткани. Хотя клетки в ней электрически связаны нексусами, многие из них образуют прямые синаптические контакты с иннервирующими их аксонами, но привычных нейро-мышечных синапсов в гладкомышечной ткани не образуют. Высвобождение медиатора происходит из многочисленных утолщений (расширений), расположенных по длине вегетативных аксонов (Рис. 1).

Медиаторы достигают путем диффузии мышечных клеток и активизируют их. При этом в клетках возникают возбуждающие потенциалы, переходящие в потенциалы действия, которые вызывают тетанообразное сокращение.

Функции и свойства гладких мышц

Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется.

Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина.

Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

Норадреналин действует на б- и в-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с в-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на б-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается.

Похожих постов не найдено

Комментариев нет, будьте первым кто его оставит